## GC METHODS FOR QUANTITATIVE DETERMINATION OF BENZENE IN GASOLINE

Instrument: HP 5890 II GC with Dual FIDs, Split/Splitless Inlet and Purged Packed Inlet

## SUMMARY

GC–FID methods using two different capillary columns have been developed for the determination of benzene in gasoline samples and petroleum fractions. The methods were compared and evaluated. GC–FID with a PONA column is not appropriate for routine analysis. GC–FID with a TCEP column enables precise and accurate measurement of the benzene content of gasoline and petroleum fractions and can be widely used for analysis of petroleum products – there is no limitation of sample composition. Results obtained from analysis of commercial samples of gasoline and petroleum fractions agree with those obtained by use of the IR spectroscopy reference method

## EXPERIMENTAL

Reagents and Calibration Solutions Benzene, isooctane, and 2-butanone (all 99.5% purity) were obtained from Fluka. Gasoline samples and petroleum fractions, each with different PONA values were obtained from Lukoil Neftochim Bourgas JSC. Five calibration solutions of benzene in isooctane, with and without internal standard, were prepared. The approximate concentrations of benzene were 0.1, 0.5, 1.0, 1.5, and 2.0% (v/v). 2-Butanone was used as internal standard.

| Method       | Technique | Scope                                                                                                        | Repea                                                                      | atability                                                       | Reproducibility                                                   | poratio |
|--------------|-----------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------|---------|
| ASTM<br>3606 | GC-TCD    | 0.1-5%(v/v) for<br>finished motor and<br>aviation gasoline                                                   | Range<br>0.1–1.5%<br>(v/v)                                                 | 0.03(X) + 0.01                                                  | 0.13(X) + 0.05                                                    | poratio |
| ASTM<br>4420 | GC-TCD    | 0.1-5%(v/v) for fini-<br>shed motor gasoline                                                                 | 0.171 × measured value                                                     |                                                                 | 0.408 × measu<br>-red value                                       |         |
| ASTM<br>5580 | GC-FID    | 0.1-5%(v/v) for<br>finished motor<br>gasoline                                                                | Range<br>0.14–1.79%<br>(v/v)                                               | 0.0265(X <sup>0.65</sup> )                                      | 0.1229(X <sup>0.65</sup> )                                        |         |
| ASTM<br>5769 | GC-MS     | 0.1-4% (v/v) for<br>finished motor gaso-<br>line; gasoline contai-<br>ning oxygenated<br>blending components | Range<br>0.09–4.0%<br>(v/v)                                                | 0.046(X <sup>0.67</sup> )                                       | 0.221(X <sup>0.67</sup> )                                         |         |
| IP 425       | GC-FID    | 0.05–6.0% (v/v)                                                                                              | Concentration<br>0.02<br>0.05<br>0.1<br>0.2<br>0.5<br>1.0<br>2.0<br>5.0    | 0.002<br>0.04<br>0.06<br>0.010<br>0.019<br>0.03<br>0.04<br>0.08 | 0.003<br>0.005<br>0.008<br>0.013<br>0.025<br>0.04<br>0.06<br>0.11 |         |
| EN<br>12177  | GC-FID    | 0.05–6.0% (v/v)<br>unleaded petrol                                                                           | Range<br>0.05-0.15%<br>(v/v)<br>0.15-1.50%<br>(v/v)<br>1.50-6.00%<br>(v/v) | 0.005<br>0.03<br>0.05                                           | 0.01<br>0.10<br>0.25                                              |         |

## Table I

Test methods for determination of benzene in gasoline

Chromatographic Systems and Conditions

Results were obtained by use of two different gas chromatographs. The first was a Hewlett–Packard 5890 series II model gas chromatograph (GC) equipped with a split/splitless injector, a flame ionization detector, and a 50 m × 0.2 mm i.d. PONA column coated with crosslinked polydimethylsiloxane gum. The injector temperature was 200°C and the detector temperature 250°C. The GC oven temperature was programmed from 35°C at 2° min<sup>-1</sup> to 200°C which was held for 10 min. Hydrogen was used as the carrier gas at a flow rate of 1.0 mL min<sup>-1</sup>; the split ratio was 1:100.

The second GC system was a Hewlett–Packard model 5890 series II GC with flame ionization detector and a 50 m × 0.25 mm i.d. column coated with a 0.4  $\mu$ m film of CP-TCEP (Varian). The detector and injector temperatures were 275 and 250°C, respectively, and the oven temperature was maintained at 50°C for 10 min then programmed 10° min–1 to a final temperature of 115 °C which was held for 10 min. Hydrogen was used as carrier gas at a flow rate of 1.0 mL min–1, the split ratio was 1:60.

Scientific Incorporation

| 2.433<br>3.289<br>3.289<br>3.487<br>3.485<br>4.415<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4.572<br>4. |                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| J. aat.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | an a |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - 7.368 Benzene                          |
| Scientific Inco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | orporation                               |
| £ 0.271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
| 5.713                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |
| 8.683                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.826                                    |
| 5.256<br>5.445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 9.553                                  |
| \$ 9.452<br>9.788                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |
| £\$0.037<br>10.219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |



Partial chromatogram obtained from a gasoline sample on a PONA column

REFERENCES

[1] Directive 98/70/EC of the European Parliament and of the Council, 13 October, 1998

[2] ASTM D 3606-99. Standard Test Method for Determination of Benzene and Toluene in Finished Motor and Aviation Gasoline by Gas Chromatography, Vol.05.02, 504, 2000

[3] ASTM D 4420-94. Standard Test Method for Aromatics in Finished Gasoline by Gas Chromatography, Vol.05.02, 881, 2000

[4] ASTM D 5580-95. Standard Test Method for Determination of Benzene, Toluene, Ethylbenzene, p/m-Xylene, o-Xylene, C9 and Heavier Aromatics and Total Aromatics in Finished Gasoline by Gas Chromatography, Vol.05.03, 620, 2000

[5] ASTM D 5769-98. Standard Test Method for Determination of Benzene, Toluene, and Total Aromatics in Finished Gasoline by Gas Chromatography/Mass Spectrometry, Vol.05.03, 760, 2000

[6] IP 425/96 Determination of Benzene Content of Petrol – Gas Chromatography Method

[7] EN 12177:1998 Liquid petroleum products – Unleaded petrol – Determination of benzene content by gas chromatography

[8] EN 238:1996E Liquid petroleum products – Petrol – Determination of the benzene content by infrared spectrometry

[9] E. Lopez – Anreus, S. Garrigues, and M. de la Guardia, Anal. Chim. Acta, 333, 157 (1996)

[10] G.S. Frysinger, R.B. Gaines, E.B. Ledford, J. High. Resol. Chromatogr., 22, 195 (1999)

[11] G.S. Frysinger and R.B. Gaines, J. High. Resol. Chromatogr., 22, 251 (1999)

http://www.us.edu.pl/uniwersytet/jednostki/wydzialy/chemia/acta/ac13/zrodla/18\_AC13.pdf